

Goniofotometro GMB 2000

Caratteristiche:

Goniofotometro a rotazione dell'apparecchio secondo la norma EN 13032 Tipo 1, corrispondente al Tipo 1, Tipo 2, Tipo 3 della Raccomandazione CIE n.70 Cap.5 e al Type A e Type B della norma IESNA LM-75-01 per il rilievo delle caratteristiche fotometriche di apparecchi di illuminazione, di lampade e sorgenti LED con dimensioni massime dell'area luminosa che devono essere contenute in una sfera di diametro 200 mm. Le dimensioni massime dell'apparecchio possono raggiungere anche i 600 mm, in funzione della posizione relativa delle parti che emettono luce rispetto alle parti strutturali.

E' possibile effettuare il rilievo secondo i sistemi:

- C-Gamma
- V-H (B-Beta)
- per superficie coniche.

La macchina è composta da una struttura in profilati di alluminio anodizzati neri che contengono il sistema di posizionamento e misura costituito dai seguenti componenti:

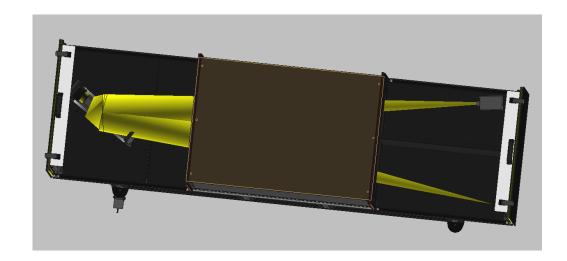
- motore passo-passo e riduttore a lobi di alta precisione a gioco zero per la rotazione attorno all'asse verticale (movimentazione per angoli Gamma).
- slitta regolabile di sostegno e posizionamento della colonna che sostiene l'apparecchio e che alloggia anche il sistema di movimentazione attorno all'asse orizzontale.
- motore passo-passo e riduttore a lobi di alta precisione a gioco zero per la movimentazione dell'apparecchio (movimentazione per piani C)
- laser di allineamento
- colonna porta fotocellula con sistema di allineamento e collimatore
- luxmetro di precisione con tempo di integrazione fino a 20 ms (tipico 60 ms) conforme alle specifiche della norma EN 13032 e della norma IESNA LM-79
- sistema di controllo e comando con interfaccia TCP/IP
- colonna porta spettroradiometro con sistema di allineamento e collimatore
- spettroradiometro di precisione con tempo di integrazione adattivo conforme alle specifiche della norma EN 13032 e della norma IESNA LM-79.
 Misura radianza ed irradianza nel visibile, da 380 a 780 nm.
- Sistema di teleassistenza ewon.

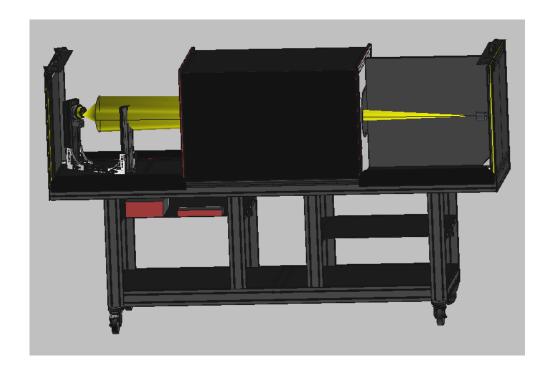
Il sistema è predisposto per la lettura e la registrazione dei seguenti parametri:

- potenza di sistema
- temperatura ambiente
- temperatura di due punti sull'apparecchio rilevata tramite termocoppie

Strumenti impiegati per il monitoraggio dei parametri:

- Wattmetri Yokogawa
- Wattmetri Newtons4th
- Datalogger Agilent, per la lettura delle termocoppie
- Datalogger Pico, per la lettura delle termocoppie




La macchina utilizza una alimentazione monofase e impegna circa 500 W, con un consumo massimo di 700 W (3A) se il carico è particolarmente gravoso, per esempio in caso di apparecchi pesanti e montati sbilanciati rispetto agli assi di rotazione.

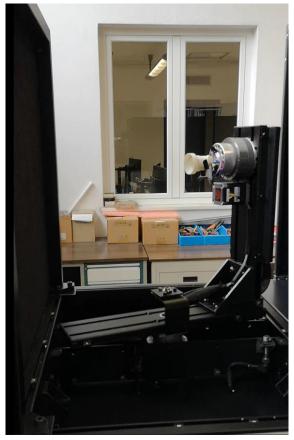
Il peso massimo dell'apparecchio misurabile è di 2 kg.

Il Goniofotometro è dotato di un sostegno orizzontale per permettere di operare con doppio vincolo sull'apparecchio e garantire il perfetto allineamento anche in caso di movimentazione tipo V-H.

SCHEMA DI FUNZIONAMENTO

Programma di controllo del Goniofotometro

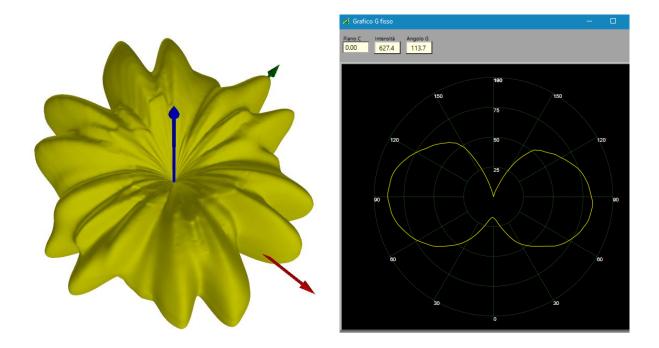
Il software per il controllo del gonio consente:


- di effettuare misure secondo gli standard internazionali (Raccomandazioni CIE, Norma EN 13032, Norma IESNA LM79)
- di usare sequenze di misura personalizzate dall'utente
- di salvare i valori rilevati e tutti gli altri parametri inerenti la misura potenza impiegata, condizioni ambientali, temperature rilevate sugli apparecchi e sugli alimentatori in un formato proprietario strutturato da cui e' possibile generare i formati Eulumdat, IES
- di eseguire misure in movimento o con arresto (di precisione) nella posizione di misura
- di effettuare fino a 10 rilievi consecutivi sulla stesso apparecchio
- di effettuare controlli di valori puntuali definibili dall'operatore
- di controllare la stabilità dell'apparecchio in esame per determinare l'inizio del rilievo secondo le norme vigenti
- di regolare la durata delle soste fra un piano e l'altro
- di regolare la velocità di rotazione attorno agli assi durante il rilievo
- di rilevare i parametri elettrici prima e dopo gli alimentatori (supporta i wattmetri Newtons4th e Yokogawa)
- di rilevare i parametri di temperatura, umidità e velocità dell'aria durante il rilievo utilizzando la stazione meteo DeltaOhm
- di valutare la stabilità dei parametri elettrici durante il rilievo con arresto immediato dello stesso in caso di differenze superiori a un delta predefinito
- di valutare la stabilità dei parametri ambientali durante il rilievo con arresto immediato dello stesso in caso di differenze superiori a un delta predefinito
- di valutare la curva di flusso dell'apparecchio dall'accensione e per un periodo di tempo determinato
- di valutare il decadimento del flusso per apparecchi d'emergenza
- di visualizzare il diagramma polare del piano in esame durante tutta la misura
- di spegnere l'apparecchio e la macchina al termine del rilievo (funzione utile nel caso di rilievi di lunga durata effettuabili anche di notte)
- di rilevare le temperature di apparecchi e lampade mediante sistema di termocoppie
- di notificare via email (se disponibile un server smtp) il termine del rilievo in corso ed eventuali eventi straordinari nel corso del rilievo

Ambiente

Windows 11, 10, 8.x, 7.x

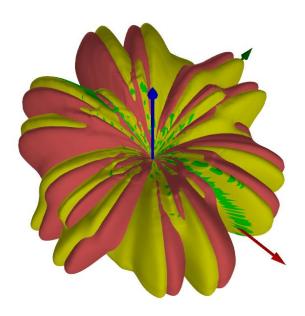
Rilievi effettuabili con il Goniofotometro GMB2000

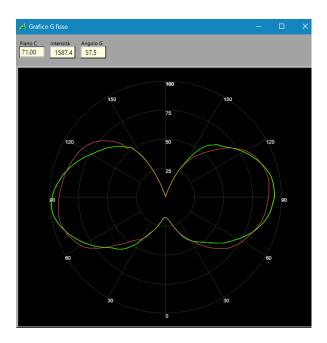

Rilievi fotometrici

È possibile effettuare rilievi fotometrici in modo completamente automatico, impostando i parametri generali del modulo LED e lanciando il rilievo:

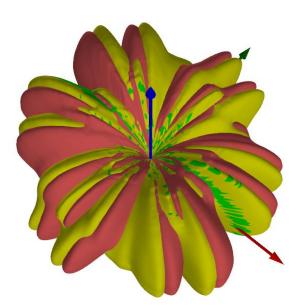
il programma controlla che sia raggiunta la stabilità di emissione e di assorbimento e fa partire il rilevamento, alla fine del quale genera in automatico i formati fotometrici più comuni. Inoltre viene generato un file Excel che contiene tutti i parametri della misura ed infine tutti i file prodotti sono zippati in un unico file di backup.

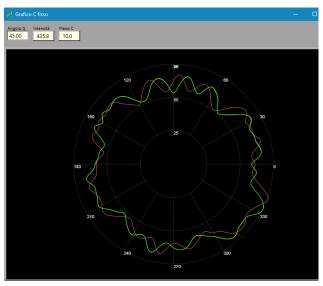
Formati fotometrici generati automaticamente:


- LDT
- IESNA



Esempio di solido fotometrico ottenuto da un rilievo di lampada filamentLED




È possibile effettuare il confronto tra più rilievi di prodotti simili:

anche per superfici coniche:

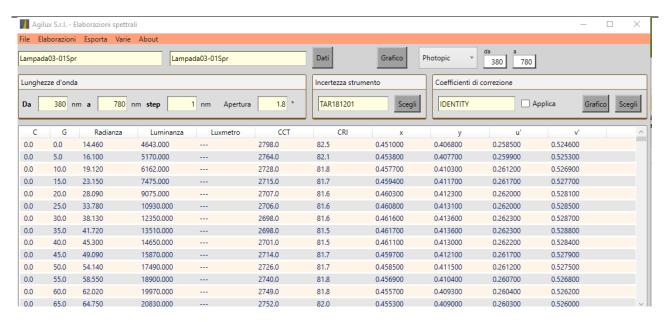
Rilievi spettrometrici

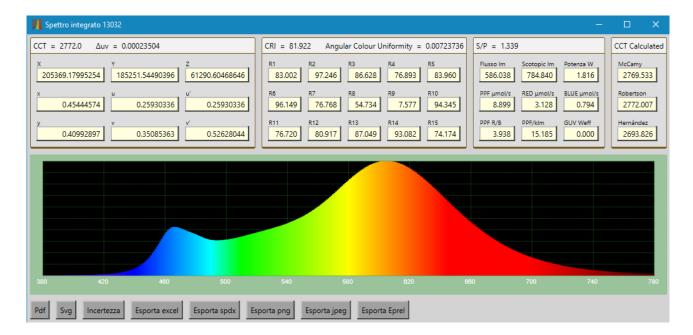
È possibile effettuare rilievi spettrometrici in modo completamente automatico, impostando i parametri generali del modulo LED e lanciando il rilievo: il programma esegue il rilevamento dello spettro in ogni posizione richiesta salvando i dati in un formato di testo.

Alla fine del rilievo è possibile analizzare i dati ed integrarli per ottenere lo spettro integrato che è del tutto equivalente allo spettro ottenibile in sfera integratrice.

In aggiunta, però, in questo caso è possibile analizzare le variazioni spettrali di emissione in funzione delle varie direzioni spaziali e determinare l'Uniformità Angolare di Colore (Angular Colour Uniformity) $\Delta u'v'$ secondo la norma EN13032-4.

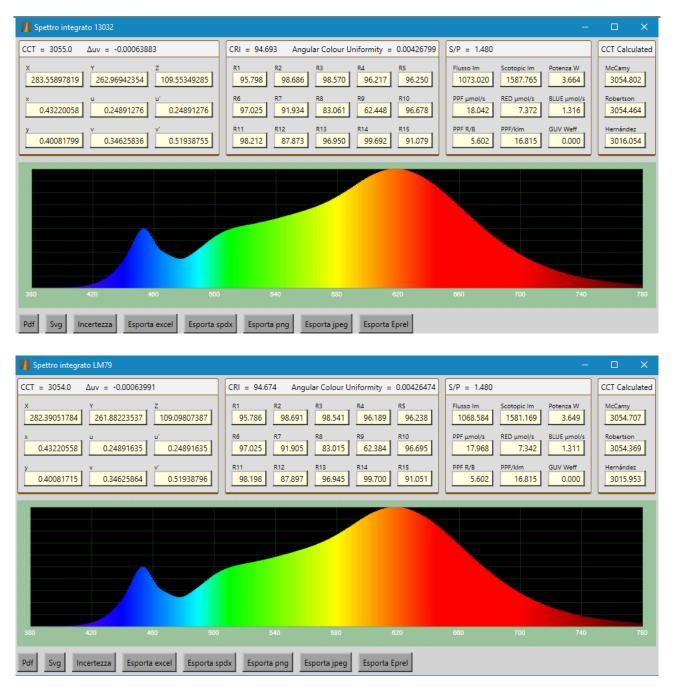
L'integrazione può essere eseguita secondo il metodo descritto in EN 13032-4 oppure secondo il metodo IES LM-79.

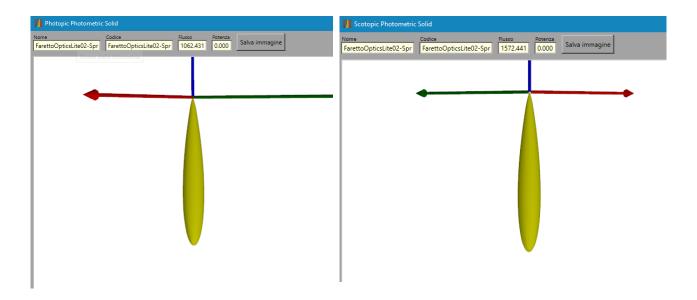

Anche in questo caso vengono generati un file LDT ed un file IESNA contenenti i dati di intensità fotometrica rilevati tramite spettroradiometro, il file Excel contenete tutti i dati misurati durante il rilievo e lo Zip di backup.

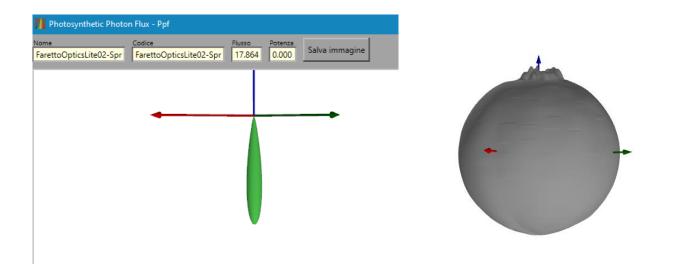

Inoltre è possibile analizzare i dati spettrali e ricavare:

- lo spettro integrato
- gli spettri ed i parametri colorimetrici in ogni posizione di rilevo
- il solido fotometrico fotopico
- il solido fotometrico scotopico
- il solido della potenza irradiata nello spazio
- il solido di efficacia PAR
- l'analisi di tutti i parametri in range specifici di lunghezze d'onda
- la variazione della CCT nelle varie direzioni spaziali
- i files EULUMDAT per ogni parametro considerato

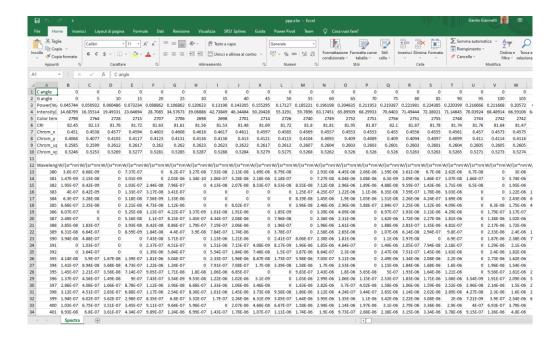
I dati spettrali possono essere salvati in formato Excel, in formato TM27-14 e nei nuovi formati TM33-19 o UNI11733.




Esempio di spettri singoli in varie direzioni e di spettro integrato



Spettri integrati secondo norme diverse



Solido fotometrico fotopico e scotopico dello stesso prodotto ricavati da rilievo spettrometrico

Solido fotometrico PPF – flusso fotonico di fotosintesi – e della variazione della CCT nello spazio

Esempio di file Excel spettrometrico